Spray Drift From Aerial Applications

IO 1996 by bying LAST but AGEN. ALL ROOM WARRANT

\$200 Y-50072

Spray Drift Task Force

- · Consortium of pesticide registrants
- · Formed in response to EPA data requirements
- · Supports registration of more than 2,000 products

7.00Y-000G

Purpose of the SDTF Studies

- Quantify drift from ground, aerial, airblast and chemigation
- · Use for risk assessments

TARRY-BREA

Spray Drift is not Active Ingredient Specific

- Formulation/tank mix have small effect
 - but not the active ingredient itself
- Droplet size spectrum and height are the major variables
- Wind speed next, then less impact of relative humidity, application speed and non-volatile fraction

0700 by Spiny Livel link house. All rights reserved.

HERRY SERVE

Spray Drift vs. Vapor Drift

- · SDTF measure primary spray drift
- · SDTF = movement of droplets and is generic
- · Vapor drift = movement of gas and is product-specific

(CONTRACT)

EPA Scientific Review

PERSY STEET

The information being presented is not an in-depth presentation of all data generated by the SDTF.

Use of pesticide products is strictly governed by label instructions.

Always read and follow the label directions.

THE YEAR

What do the SDTF findings tell us?

- · Confirm and quantify the factors affecting drift
- · Droplet size is the most important factor
- · Drift only occurs downwind
- · Cannot totally eliminate drift with current technology
- . There are many ways to minimize drift
- · Most of the spray stays on target

12527-5851

Objectives

- Develop a generic database for evaluating a wide range of:
 - -Equipment combinations
 - -Atmospheric conditions
 - -Spray mixes
- Validate aerial spray drift model

PERSONAL PROPERTY.

Factors Affecting Drift from Aerial Application

- -Droplet size
- -Aircraft position (swath adjustment)
- -Nozzle height
- -Boom length
- -Wind speed and direction
- -Physical properties of the spray mix

PERSY, SPEEZ

Droplet size is the most important factor influencing drift.

TABLE - SHEET

Droplet Size Studies

· Atomization studies in wind tunnels

97244.0007

Droplet Size Studies

- Atomization studies in wind tunnels
- VMD values from 106 to > 811 microns
- Percent Volume < 141 microns from 0.2% to 70%

9200 Y-1002

Droplet Size Studies

- · Atomization studies in wind tunnels
- •VMD values from 106 to > 811 microns
- Percent Volume < 141 microns from 0.2% to 70%

9230Y-1062

Test Applicati Nozzles and Angles				
	Spray Volume (gal/acre)			
	≤0.5	> 0.5 - 2.0	>2.0 - 5.0	>5.0 - 25
Helicopter (60 mph)		8005 - 45*	D4-46-45°	D8-0°
Piston (110 mph)	8002 - 90"	D4-45-45°	D6-46 - 45°	D8-46-0
	9005 - 30"			Ds-0*
Turbine (150 mph)	*	D4-45-45°	D6-46 - 45°	D8-0*

Test Application Variables Nozzle height: 6 feet - 31 feet Boom length: 69% & 84% of wingspan Carrier: oil or water Physical properties of spray mix

Atmospheric Condition	ns
Temperature:	32°F - 95°F
Relative humidity:	7%-94%
Wind speeds:	2 mph - 17 mph
	(97547-00

Testing Challenge

Changes in atmospheric conditions between treatments

PERSON SOUT

Solution

Apply a control treatment successively with each experimental treatment:

- Special aircraft equipped with dual application system
- Experimental treatment
- Control treatment
- D6-46 nozzle
- 45° orientation
- 110 mph
- -8 ft release height

P2047-50022

Test Assumptions

- Differences between control treatments are due <u>only</u> to atmospheric conditions
- Differences between experimental treatments are due to atmospheric conditions <u>and</u> application procedures
- Differences between experimental and control treatments are due <u>only</u> to application procedures

180 Total Applications

- 45 experimental treatments x 2 replications = 90
- 45 control treatments x 2 replications = 90

PARKY-SHEET

Factors Affecting Drift from Aerial Application

- -Droplet size
- -Aircraft position (swath adjustment)
- -Nozzle height
- -Boom length
- -Wind speed and direction.
- -Physical properties of the spray mix

#5507-858E

SDTF Data Will Be Used For Environmental Risk Assessments

- · Active ingredients have very little affect on drift
- Active ingredients differ in potential for environmental effects
- · Buffer zones can protect sensitive areas
- Buffer zones are upwind and adjacent to sensitive areas

02201-0222